如何正确使用设计模式?

设计模式要活学活用,不要生搬硬套。想要游刃有余地使用设计模式,需要打下牢固的程序设计语言基础、夯实自己的编程思想、积累大量的时间经验、提高开发能力。目的都是让程序低耦合,高复用,高内聚,易扩展,易维护。

1. 需求驱动

不仅仅是功能性需求,需求驱动还包括性能和运行时的需求,如软件的可维护性和可复用性等方面。设计模式是针对软件设计的,而软件设计是针对需求的,一定不要为了使用设计模式而使用设计模式,否则可能会使设计变得复杂,使软件难以调试和维护。

2. 分析成功的模式应用项目

对现有的应用实例进行分析是一个很好的学习途径,应当注意学习已有的项目,而不仅是学习设计模式如何实现,更重要的是注意在什么场合使用设计模式。

3. 充分了解所使用的开发平台

设计模式大部分都是针对面向对象的软件设计,因此在理论上适合任何面向对象的语言,但随着技术的发展和编程环境的改善,设计模式的实现方式会有很大的差别。在一些平台下,某些设计模式是自然实现的。

不仅指编程语言,平台还包括平台引入的技术。例如,Java EE 引入了反射机制和依赖注入,这些技术的使用使设计模式的实现方式产生了改变。

4. 在编程中领悟模式

软件开发是一项实践工作,最直接的方法就是编程。没有从来不下棋却熟悉定式的围棋高手,也没有不会编程就能成为架构设计师的先例。掌握设计模式是水到渠成的事情,除了理论只是和实践积累,可能会“渐悟”或者“顿悟”。

5.避免设计过度

设计模式解决的是设计不足的问题,但同时也要避免设计过度。一定要牢记简洁原则,要知道设计模式是为了使设计简单,而不是更复杂。如果引入设计模式使得设计变得复杂,只能说我们把简单问题复杂化了,问题本身不需要设计模式。

开闭原则

开闭原则(Open Closed Principle,OCP)由勃兰特·梅耶(Bertrand Meyer)提出,他在 1988 年的著作《面向对象软件构造》(Object Oriented Software Construction)中提出:软件实体应当对扩展开放,对修改关闭(Software entities should be open for extension,but closed for modification),这就是开闭原则的经典定义。

这里的软件实体包括以下几个部分:

  1. 项目中划分出的模块
  2. 类与接口
  3. 方法

开闭原则的含义是:当应用的需求改变时,在不修改软件实体的源代码或者二进制代码的前提下,可以扩展模块的功能,使其满足新的需求。

开闭原则的作用

开闭原则是面向对象程序设计的终极目标,它使软件实体拥有一定的适应性和灵活性的同时具备稳定性和延续性。具体来说,其作用如下。

1. 对软件测试的影响

软件遵守开闭原则的话,软件测试时只需要对扩展的代码进行测试就可以了,因为原有的测试代码仍然能够正常运行。

2. 可以提高代码的可复用性

粒度越小,被复用的可能性就越大;在面向对象的程序设计中,根据原子和抽象编程可以提高代码的可复用性。

3. 可以提高软件的可维护性

遵守开闭原则的软件,其稳定性高和延续性强,从而易于扩展和维护。

开闭原则的实现方法

可以通过“抽象约束、封装变化”来实现开闭原则,即通过接口或者抽象类为软件实体定义一个相对稳定的抽象层,而将相同的可变因素封装在相同的具体实现类中。

因为抽象灵活性好,适应性广,只要抽象的合理,可以基本保持软件架构的稳定。而软件中易变的细节可以从抽象派生来的实现类来进行扩展,当软件需要发生变化时,只需要根据需求重新派生一个实现类来扩展就可以了。

里氏替换原则

里氏替换原则(Liskov Substitution Principle,LSP)由麻省理工学院计算机科学实验室的里斯科夫(Liskov)女士在 1987 年的“面向对象技术的高峰会议”(OOPSLA)上发表的一篇文章《数据抽象和层次》(Data Abstraction and Hierarchy)里提出来的,她提出:继承必须确保超类所拥有的性质在子类中仍然成立(Inheritance should ensure that any property proved about supertype objects also holds for subtype objects)。

里氏替换原则主要阐述了有关继承的一些原则,也就是什么时候应该使用继承,什么时候不应该使用继承,以及其中蕴含的原理。里氏替换原是继承复用的基础,它反映了基类与子类之间的关系,是对开闭原则的补充,是对实现抽象化的具体步骤的规范。

里氏替换原则的作用

里氏替换原则的主要作用如下。

  1. 里氏替换原则是实现开闭原则的重要方式之一。
  2. 它克服了继承中重写父类造成的可复用性变差的缺点。
  3. 它是动作正确性的保证。即类的扩展不会给已有的系统引入新的错误,降低了代码出错的可能性。
  4. 加强程序的健壮性,同时变更时可以做到非常好的兼容性,提高程序的维护性、可扩展性,降低需求变更时引入的风险。

里氏替换原则的实现方法

里氏替换原则通俗来讲就是:子类可以扩展父类的功能,但不能改变父类原有的功能。也就是说:子类继承父类时,除添加新的方法完成新增功能外,尽量不要重写父类的方法。

根据上述理解,对里氏替换原则的定义可以总结如下:

  • 子类可以实现父类的抽象方法,但不能覆盖父类的非抽象方法
  • 子类中可以增加自己特有的方法
  • 当子类的方法重载父类的方法时,方法的前置条件(即方法的输入参数)要比父类的方法更宽松
  • 当子类的方法实现父类的方法时(重写/重载或实现抽象方法),方法的后置条件(即方法的的输出/返回值)要比父类的方法更严格或相等

通过重写父类的方法来完成新的功能写起来虽然简单,但是整个继承体系的可复用性会比较差,特别是运用多态比较频繁时,程序运行出错的概率会非常大。

如果程序违背了里氏替换原则,则继承类的对象在基类出现的地方会出现运行错误。这时其修正方法是:取消原来的继承关系,重新设计它们之间的关系。

依赖倒置原则

依赖倒置原则(Dependence Inversion Principle,DIP)是 Object Mentor 公司总裁罗伯特·马丁(Robert C.Martin)于 1996 年在 C++ Report 上发表的文章。

依赖倒置原则的原始定义为:高层模块不应该依赖低层模块,两者都应该依赖其抽象;抽象不应该依赖细节,细节应该依赖抽象(High level modules shouldnot depend upon low level modules.Both should depend upon abstractions.Abstractions should not depend upon details. Details should depend upon abstractions)。其核心思想是:要面向接口编程,不要面向实现编程。

依赖倒置原则是实现开闭原则的重要途径之一,它降低了客户与实现模块之间的耦合。

由于在软件设计中,细节具有多变性,而抽象层则相对稳定,因此以抽象为基础搭建起来的架构要比以细节为基础搭建起来的架构要稳定得多。这里的抽象指的是接口或者抽象类,而细节是指具体的实现类。

使用接口或者抽象类的目的是制定好规范和契约,而不去涉及任何具体的操作,把展现细节的任务交给它们的实现类去完成。

依赖、倒置原则的作用

依赖倒置原则的主要作用如下。

  • 依赖倒置原则可以降低类间的耦合性。
  • 依赖倒置原则可以提高系统的稳定性。
  • 依赖倒置原则可以减少并行开发引起的风险。
  • 依赖倒置原则可以提高代码的可读性和可维护性。

依赖倒置原则的实现方法

依赖倒置原则的目的是通过要面向接口的编程来降低类间的耦合性,所以我们在实际编程中只要遵循以下4点,就能在项目中满足这个规则。

  1. 每个类尽量提供接口或抽象类,或者两者都具备。
  2. 变量的声明类型尽量是接口或者是抽象类。
  3. 任何类都不应该从具体类派生。
  4. 使用继承时尽量遵循里氏替换原则。

单一职责原则

单一职责原则(Single Responsibility Principle,SRP)又称单一功能原则,由罗伯特·C.马丁(Robert C. Martin)于《敏捷软件开发:原则、模式和实践》一书中提出的。这里的职责是指类变化的原因,单一职责原则规定一个类应该有且仅有一个引起它变化的原因,否则类应该被拆分(There should never be more than one reason for a class to change)。

该原则提出对象不应该承担太多职责,如果一个对象承担了太多的职责,至少存在以下两个缺点:

  1. 一个职责的变化可能会削弱或者抑制这个类实现其他职责的能力;
  2. 当客户端需要该对象的某一个职责时,不得不将其他不需要的职责全都包含进来,从而造成冗余代码或代码的浪费。

单一职责原则的优点

单一职责原则的核心就是控制类的粒度大小、将对象解耦、提高其内聚性。如果遵循单一职责原则将有以下优点。

  • 降低类的复杂度。一个类只负责一项职责,其逻辑肯定要比负责多项职责简单得多。
  • 提高类的可读性。复杂性降低,自然其可读性会提高。
  • 提高系统的可维护性。可读性提高,那自然更容易维护了。
  • 变更引起的风险降低。变更是必然的,如果单一职责原则遵守得好,当修改一个功能时,可以显著降低对其他功能的影响。

单一职责原则的实现方法

单一职责原则是最简单但又最难运用的原则,需要设计人员发现类的不同职责并将其分离,再封装到不同的类或模块中。而发现类的多重职责需要设计人员具有较强的分析设计能力和相关重构经验。下面以大学学生工作管理程序为例介绍单一职责原则的应用。

接口隔离原则

接口隔离原则(Interface Segregation Principle,ISP)要求程序员尽量将臃肿庞大的接口拆分成更小的和更具体的接口,让接口中只包含客户感兴趣的方法。

2002 年罗伯特·C.马丁给“接口隔离原则”的定义是:客户端不应该被迫依赖于它不使用的方法(Clients should not be forced to depend on methods they do not use)。该原则还有另外一个定义:一个类对另一个类的依赖应该建立在最小的接口上(The dependency of one class to another one should depend on the smallest possible interface)。

以上两个定义的含义是:要为各个类建立它们需要的专用接口,而不要试图去建立一个很庞大的接口供所有依赖它的类去调用。

接口隔离原则和单一职责都是为了提高类的内聚性、降低它们之间的耦合性,体现了封装的思想,但两者是不同的:

  • 单一职责原则注重的是职责,而接口隔离原则注重的是对接口依赖的隔离。
  • 单一职责原则主要是约束类,它针对的是程序中的实现和细节;接口隔离原则主要约束接口,主要针对抽象和程序整体框架的构建。

接口隔离原则的优点

接口隔离原则是为了约束接口、降低类对接口的依赖性,遵循接口隔离原则有以下 5 个优点。

  1. 将臃肿庞大的接口分解为多个粒度小的接口,可以预防外来变更的扩散,提高系统的灵活性和可维护性。
  2. 接口隔离提高了系统的内聚性,减少了对外交互,降低了系统的耦合性。
  3. 如果接口的粒度大小定义合理,能够保证系统的稳定性;但是,如果定义过小,则会造成接口数量过多,使设计复杂化;如果定义太大,灵活性降低,无法提供定制服务,给整体项目带来无法预料的风险。
  4. 使用多个专门的接口还能够体现对象的层次,因为可以通过接口的继承,实现对总接口的定义。
  5. 能减少项目工程中的代码冗余。过大的大接口里面通常放置许多不用的方法,当实现这个接口的时候,被迫设计冗余的代码。

接口隔离原则的实现方法

在具体应用接口隔离原则时,应该根据以下几个规则来衡量。

  • 接口尽量小,但是要有限度。一个接口只服务于一个子模块或业务逻辑。
  • 为依赖接口的类定制服务。只提供调用者需要的方法,屏蔽不需要的方法。
  • 了解环境,拒绝盲从。每个项目或产品都有选定的环境因素,环境不同,接口拆分的标准就不同深入了解业务逻辑。
  • 提高内聚,减少对外交互。使接口用最少的方法去完成最多的事情。

迪米特法则

迪米特法则(Law of Demeter,LoD)又叫作最少知识原则(Least Knowledge Principle,LKP),产生于 1987 年美国东北大学(Northeastern University)的一个名为迪米特(Demeter)的研究项目,由伊恩·荷兰(Ian Holland)提出,被 UML 创始者之一的布奇(Booch)普及,后来又因为在经典著作《程序员修炼之道》(The Pragmatic Programmer)提及而广为人知。

迪米特法则的定义是:只与你的直接朋友交谈,不跟“陌生人”说话(Talk only to your immediate friends and not to strangers)。其含义是:如果两个软件实体无须直接通信,那么就不应当发生直接的相互调用,可以通过第三方转发该调用。其目的是降低类之间的耦合度,提高模块的相对独立性。

迪米特法则中的“朋友”是指:当前对象本身、当前对象的成员对象、当前对象所创建的对象、当前对象的方法参数等,这些对象同当前对象存在关联、聚合或组合关系,可以直接访问这些对象的方法。

迪米特法则的优点

迪米特法则要求限制软件实体之间通信的宽度和深度,正确使用迪米特法则将有以下两个优点。

  1. 降低了类之间的耦合度,提高了模块的相对独立性。
  2. 由于亲合度降低,从而提高了类的可复用率和系统的扩展性。

但是,过度使用迪米特法则会使系统产生大量的中介类,从而增加系统的复杂性,使模块之间的通信效率降低。所以,在釆用迪米特法则时需要反复权衡,确保高内聚和低耦合的同时,保证系统的结构清晰。

迪米特法则的实现方法

从迪米特法则的定义和特点可知,它强调以下两点:

  1. 从依赖者的角度来说,只依赖应该依赖的对象。
  2. 从被依赖者的角度说,只暴露应该暴露的方法。

所以,在运用迪米特法则时要注意以下 6 点。

  1. 在类的划分上,应该创建弱耦合的类。类与类之间的耦合越弱,就越有利于实现可复用的目标。
  2. 在类的结构设计上,尽量降低类成员的访问权限。
  3. 在类的设计上,优先考虑将一个类设置成不变类。
  4. 在对其他类的引用上,将引用其他对象的次数降到最低。
  5. 不暴露类的属性成员,而应该提供相应的访问器(set 和 get 方法)。
  6. 谨慎使用序列化(Serializable)功能。

合成复用原则

合成复用原则(Composite Reuse Principle,CRP)又叫组合/聚合复用原则(Composition/Aggregate Reuse Principle,CARP)。它要求在软件复用时,要尽量先使用组合或者聚合等关联关系来实现,其次才考虑使用继承关系来实现。

如果要使用继承关系,则必须严格遵循里氏替换原则。合成复用原则同里氏替换原则相辅相成的,两者都是开闭原则的具体实现规范。

合成复用原则的重要性

通常类的复用分为继承复用和合成复用两种,继承复用虽然有简单和易实现的优点,但它也存在以下缺点。

  1. 继承复用破坏了类的封装性。因为继承会将父类的实现细节暴露给子类,父类对子类是透明的,所以这种复用又称为“白箱”复用。
  2. 子类与父类的耦合度高。父类的实现的任何改变都会导致子类的实现发生变化,这不利于类的扩展与维护。
  3. 它限制了复用的灵活性。从父类继承而来的实现是静态的,在编译时已经定义,所以在运行时不可能发生变化。

采用组合或聚合复用时,可以将已有对象纳入新对象中,使之成为新对象的一部分,新对象可以调用已有对象的功能,它有以下优点。

  1. 它维持了类的封装性。因为成分对象的内部细节是新对象看不见的,所以这种复用又称为“黑箱”复用。
  2. 新旧类之间的耦合度低。这种复用所需的依赖较少,新对象存取成分对象的唯一方法是通过成分对象的接口。
  3. 复用的灵活性高。这种复用可以在运行时动态进行,新对象可以动态地引用与成分对象类型相同的对象。

合成复用原则的实现方法

合成复用原则是通过将已有的对象纳入新对象中,作为新对象的成员对象来实现的,新对象可以调用已有对象的功能,从而达到复用。

设计原则一句话归纳目的
开闭原则对扩展开放,对修改关闭降低维护带来的新风险
依赖倒置原则高层不应该依赖低层,要面向接口编程更利于代码结构的升级扩展
单一职责原则一个类只干一件事,实现类要单一便于理解,提高代码的可读性
接口隔离原则一个接口只干一件事,接口要精简单一功能解耦,高聚合、低耦合
迪米特法则不该知道的不要知道,一个类应该保持对其它对象最少的了解,降低耦合度只和朋友交流,不和陌生人说话,减少代码臃肿
里氏替换原则不要破坏继承体系,子类重写方法功能发生改变,不应该影响父类方法的含义防止继承泛滥
合成复用原则尽量使用组合或者聚合关系实现代码复用,少使用继承降低代码耦合

实际上,这些原则的目的只有一个:降低对象之间的耦合,增加程序的可复用性、可扩展性和可维护性。

记忆口诀:访问加限制,函数要节俭,依赖不允许,动态加接口,父类要抽象,扩展不更改。

在程序设计时,我们应该将程序功能最小化,每个类只干一件事。若有类似功能基础之上添加新功能,则要合理使用继承。对于多方法的调用,要会运用接口,同时合理设置接口功能与数量。最后类与类之间做到低耦合高内聚。

23种设计模式

分类设计模式简述一句话归纳目的生活案例
创建型设计模式 (简单来说就是用来创建对象的)工厂模式(Factory Pattern)不同条件下创建不同实例产品标准化,生产更高效封装创建细节实体工厂
单例模式(Singleton Pattern)保证一个类仅有一个实例,并且提供一个全局访问点世上只有一个我保证独一无二CEO
原型模式(Prototype Pattern)通过拷贝原型创建新的对象拔一根猴毛,吹出千万个高效创建对象克隆
建造者模式(Builder Pattern)用来创建复杂的复合对象高配中配和低配,想选哪配就哪配开放个性配置步骤选配
结构型设计模式 (关注类和对象的组合)代理模式(Proxy Pattern)为其他对象提供一种代理以控制对这个对象的访问没有资源没时间,得找别人来帮忙增强职责媒婆
外观模式(Facade Pattern)对外提供一个统一的接口用来访问子系统打开一扇门,通向全世界统一访问入口前台
装饰器模式(Decorator Pattern)为对象添加新功能他大舅他二舅都是他舅灵活扩展、同宗同源煎饼
享元模式(Flyweight Pattern)使用对象池来减少重复对象的创建优化资源配置,减少重复浪费共享资源池全国社保联网
组合模式(Composite Pattern)将整体与局部(树形结构)进行递归组合,让客户端能够以一种的方式对其进行处理人在一起叫团伙,心在一起叫团队统一整体和个体组织架构树
适配器模式(Adapter Pattern)将原来不兼容的两个类融合在一起万能充电器兼容转换电源适配
桥接模式(Bridge Pattern)将两个能够独立变化的部分分离开来约定优于配置不允许用继承
行为型设计模式 (关注对象之间的通信)模板模式(Template Pattern)定义一套流程模板,根据需要实现模板中的操作流程全部标准化,需要微调请覆盖逻辑复用把大象装进冰箱
策略模式(Strategy Pattern)封装不同的算法,算法之间能互相替换条条大道通罗马,具体哪条你来定把选择权交给用户选择支付方式
责任链模式(Chain of Responsibility Pattern)拦截的类都实现统一接口,每个接收者都包含对下一个接收者的引用。将这些对象连接成一条链,并且沿着这条链传递请求,直到有对象处理它为止。各人自扫门前雪,莫管他们瓦上霜解耦处理逻辑踢皮球
迭代器模式(Iterator Pattern)提供一种方法顺序访问一个聚合对象中的各个元素流水线上坐一天,每个包裹扫一遍统一对集合的访问方式逐个检票进站
命令模式(Command Pattern)将请求封装成命令,并记录下来,能够撤销与重做运筹帷幄之中,决胜千里之外解耦请求和处理遥控器
状态模式(State Pattern)根据不同的状态做出不同的行为状态驱动行为,行为决定状态绑定状态和行为订单状态跟踪
备忘录模式(Memento Pattern)保存对象的状态,在需要时进行恢复失足不成千古恨,想重来时就重来备份、后悔机制草稿箱
中介者模式(Mediator Pattern)将对象之间的通信关联关系封装到一个中介类中单独处理,从而使其耦合松散联系方式我给你,怎么搞定我不管统一管理网状资源朋友圈
解释器模式(Interpreter Pattern)给定一个语言,定义它的语法表示,并定义一个解释器,这个解释器使用该标识来解释语言中的句子我想说”方言“,一切解释权都归我实现特定语法解析摩斯密码
观察者模式(Observer Pattern)状态发生改变时通知观察者,一对多的关系到点就通知我解耦观察者与被观察者闹钟
访问者模式(Visitor Pattern)稳定数据结构,定义新的操作行为横看成岭侧成峰,远近高低各不同解耦数据结构和数据操作KPI考核
委派模式(Delegate Pattern)允许对象组合实现与继承相同的代码重用,负责任务的调用和分配这个需求很简单,怎么实现我不管只对结果负责授权委托书